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ABSTRACT 

Diabetic cardiomyopathy (DCM) is a major complication of  diabetes mellitus, characterized by mitochondrial 
dysfunction, oxidative stress, and impaired cardiac contractility. Conventional therapies fail to address the underlying 
bioenergetic deficits, necessitating novel strategies such as mitochondrial transfer from mesenchymal stem cells 
(MSCs) to damaged cardiomyocytes. This review critically evaluated the mechanisms by which MSCs donate healthy 
mitochondria via tunneling nanotubes (TNTs), extracellular vesicles, or cell fusion, thereby restoring ATP 
production, reducing oxidative stress, and enhancing cardiomyocyte survival in DCM. Preclinical studies in rodent 
models and in vitro systems demonstrate that MSC-mediated mitochondrial transfer improves cardiac function, 
mitigates fibrosis, and rescues bioenergetic failure. However, challenges such as transfer efficiency, immunogenicity, 
and delivery optimization must be addressed before clinical translation. Emerging technologies, including 
mitochondrial nanocarriers and engineered MSCs, offer promising solutions. By synthesizing current evidence, this 
review highlights the therapeutic potential of  mitochondrial transfer while outlining key research directions for 
future investigation. This article was developed through a comprehensive analysis of  peer-reviewed preclinical 
studies, mechanistic insights, and emerging therapeutic strategies in mitochondrial medicine. If  successfully 
translated, MSC-derived mitochondrial transfer could revolutionize DCM treatment by targeting its root cause 
rather than just symptoms.   
Keywords: Mitochondrial transfer, Mesenchymal stem cells (MSCs), Diabetic cardiomyopathy (DCM), 
Mitochondrial dysfunction, Cardioprotection.   

 
INTRODUCTION 

Diabetic cardiomyopathy (DCM) is a serious complication of  diabetes mellitus, characterized by structural and 
functional abnormalities in the heart independent of  coronary artery disease or hypertension [1, 2]. The 
pathophysiology of  DCM involves metabolic disturbances, oxidative stress, inflammation, and mitochondrial 
dysfunction, which collectively contribute to impaired cardiac contractility and eventual heart failure. Among these 
factors, mitochondrial dysfunction is a central player, as cardiomyocytes are highly dependent on mitochondrial ATP 
production to sustain their continuous mechanical activity. In diabetic states, persistent hyperglycemia and lipid 
overload lead to excessive reactive oxygen species (ROS) production, mitochondrial DNA (mtDNA) damage, and 
impaired bioenergetics, further exacerbating cardiac dysfunction [3, 4].   
Conventional therapeutic approaches for DCM primarily target glycemic control and symptom management but fail 
to address the underlying mitochondrial pathology [5, 6]. This therapeutic gap has spurred interest in novel 
strategies aimed at restoring mitochondrial function in diabetic cardiomyocytes. One emerging approach is 
mitochondrial transfer from mesenchymal stem cells (MSCs) to damaged cells. MSCs possess a unique ability to 
donate healthy mitochondria to stressed cells via tunneling nanotubes (TNTs), extracellular vesicles, or cell fusion 
[7]. This intercellular mitochondrial transfer has been shown to rescue bioenergetic deficits, reduce oxidative stress, 
and improve cell survival in various disease models, including ischemic heart injury and neurodegenerative disorders.   
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Given the pivotal role of  mitochondrial dysfunction in DCM, MSC-mediated mitochondrial transfer presents a 
promising therapeutic avenue. This review explores the mechanisms underlying mitochondrial transfer, the evidence 
supporting its cardioprotective effects in diabetic cardiomyopathy, and the challenges that must be addressed before 
clinical translation. By critically evaluating preclinical studies and emerging technologies, we highlight the potential 
of  this strategy to revolutionize the treatment of  DCM.   

Pathophysiology of  Diabetic Cardiomyopathy and Mitochondrial Dysfunction 

Diabetic cardiomyopathy develops because of  chronic metabolic disturbances, including hyperglycemia, 
hyperlipidemia, and insulin resistance [8, 9]. These conditions disrupt cardiac energy metabolism, leading to an 
overreliance on fatty acid oxidation, which increases ROS production and impairs mitochondrial efficiency. Key 
features of  mitochondrial dysfunction in DCM include:   

i. Reduced Oxidative Phosphorylation (OXPHOS): Impaired electron transport chain (ETC) activity 

decreases ATP synthesis, compromising cardiomyocyte contractility.   
ii. Mitochondrial ROS Overproduction: Excessive ROS damages lipids, proteins, and mtDNA, further 

impairing mitochondrial function [10].   
iii. Mitochondrial Dynamics Disruption: Altered fission and fusion dynamics lead to fragmented 

mitochondria with reduced bioenergetic capacity [11].   
iv. Impaired Calcium Handling: Mitochondrial calcium overload exacerbates oxidative stress and triggers 

apoptosis.   
These abnormalities collectively contribute to cardiomyocyte death, fibrosis, and diastolic dysfunction, hallmark 
features of  DCM. Restoring mitochondrial health is thus a logical therapeutic target.   

Mesenchymal Stem Cells as Mitochondrial Donors 
MSCs are multipotent stromal cells with regenerative properties, largely attributed to their paracrine signaling and 
direct cell-to-cell interactions [12]. Recent studies highlight their ability to transfer mitochondria to injured cells, 
a process mediated by:   

i. Tunneling Nanotubes (TNTs): Thin, actin-based membrane bridges that facilitate organelle transfer 
between cells.   

ii. Extracellular Vesicles (EVs): Exosomes and microvesicles containing mitochondrial components or whole 
mitochondria [13].   

iii. Cell Fusion: Direct merging of  MSC and recipient cell membranes, allowing organelle exchange [14].   

MSC-derived mitochondrial transfer has been shown to rescue aerobic respiration, reduce oxidative damage, and 
enhance cell survival in various injury models. In the context of  DCM, preclinical studies suggest that MSCs can 
replenish dysfunctional cardiomyocyte mitochondria, improving cardiac function.   

Mechanisms of  Mitochondrial Transfer in Diabetic Cardiomyopathy 

Several mechanisms underline the therapeutic benefits of  MSC-mediated mitochondrial transfer in DCM:   
i. Bioenergetic Restoration: Transferred mitochondria into recipient cardiomyocytes, replenishing ETC 

components and restoring ATP production [15]. This is particularly crucial in diabetic hearts, where 
energy deficiency exacerbates contractile dysfunction.   

ii. Oxidative Stress Mitigation: Healthy mitochondria from MSCs reduce ROS overproduction by improving 
electron flow efficiency and enhancing antioxidant defenses (e.g., superoxide dismutase) [16].   

iii. Anti-Apoptotic Effects: By stabilizing mitochondrial membrane potential and preventing  

cytochrome c release, transferred mitochondria inhibit cardiomyocyte apoptosis.   
iv. Improved Calcium Homeostasis: Functional mitochondria enhance calcium buffering, reducing diastolic 

dysfunction and arrhythmia risk [17].   
Preclinical Evidence Supporting Mitochondrial Transfer Therapy 

Animal studies have demonstrated the efficacy of  MSC-mediated mitochondrial transfer in DCM:   
i. Rodent Models: Diabetic mice receiving MSC co-culture or mitochondrial injection showed improved 

cardiac output, reduced fibrosis, and enhanced mitochondrial respiration [18].   
ii. In Vitro Studies: High-glucose-treated cardiomyocytes co-cultured with MSCs exhibited restored ATP 

levels and reduced apoptosis [19].   
These findings suggest that mitochondrial transfer could be a viable therapeutic strategy, though challenges remain 
in optimizing delivery methods and ensuring long-term engraftment.   

Challenges and Future Directions 
Despite promising preclinical results, several hurdles must be addressed:   

i. Efficiency of  Transfer: Only a fraction of  cardiomyocytes receives mitochondria; strategies to enhance 

uptake are needed.   
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ii. Immunogenicity: Allogeneic MSCs may trigger immune responses; autologous or engineered MSCs could 
mitigate this [20].   

iii. Delivery Methods: Systemic infusion may lead to off-target effects; localized cardiac delivery approaches 

are under investigation.   
iv. Long-Term Safety: The risk of  tumorigenesis or arrhythmias due to mitochondrial heteroplasmy requires 

further study [21].   
Emerging technologies, such as mitochondrial nanocarriers and genetically modified MSCs, may overcome these 
limitations.   

CONCLUSION 
Mitochondrial transfer from MSCs to diabetic cardiomyocytes represents a groundbreaking therapeutic strategy for 
diabetic cardiomyopathy, addressing the root cause of  bioenergetic failure rather than merely alleviating symptoms. 
Preclinical studies demonstrate that healthy mitochondria from MSCs can restore ATP production, reduce oxidative 
damage, and improve cardiac function in diabetic models. However, key challenges such as transfer efficiency, delivery 
optimization, and long-term safety must be resolved before clinical application. Future research should focus on 
enhancing mitochondrial uptake, developing targeted delivery systems, and conducting large-scale animal studies 
to validate efficacy and safety. If  successful, this approach could revolutionize DCM treatment, offering a 
regenerative solution beyond conventional pharmacotherapy. By bridging the gap between stem cell biology and 
mitochondrial medicine, MSC-mediated mitochondrial transfer holds immense promise for mitigating diabetic 
cardiomyopathy and improving patient outcomes.   
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