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ABSTRACT 
Immune programming refers to the long-lasting shaping of immune responses through early-life exposures, 
including environmental cues, nutritional states, infections, and therapeutic interventions. These exposures during 
critical developmental windows—from the prenatal period through early postnatal life—play a decisive role in 
determining the trajectory of immune system maturation and function across the lifespan. The consequences of 
immune programming extend beyond early childhood, influencing lifelong susceptibility to infectious diseases, 
allergies, autoimmune conditions, and chronic inflammatory disorders. A growing body of evidence reveals that this 
programming is mediated by a range of mechanisms, such as epigenetic modifications, microbiome-derived signals, 
immunometabolic pathways, and neuroimmune interactions. Together, these processes orchestrate the functional 
education of both innate and adaptive immune compartments. Understanding these underlying mechanisms is 
essential for the development of targeted interventions aimed at optimizing immune resilience and reducing disease 
burden. This review presents a comprehensive synthesis of the mechanistic insights into immune programming and 
discusses the potential for early-life strategies—such as nutritional modulation, microbiota-targeted therapies, and 
immunoprophylaxis—to shape healthier immune outcomes. 
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INTRODUCTION 

The immune system is a dynamic network that begins to form early in embryonic life and continues to mature 
through infancy and childhood. During prenatal and early postnatal periods, the immune system undergoes a series 
of tightly regulated developmental milestones involving the differentiation, migration, and functional maturation of 
immune cells [1]. These early stages represent critical windows of vulnerability and opportunity during which 
various endogenous and exogenous factors can shape immune competence. The concept of immune programming 
refers to the long-lasting imprinting of immune function by early-life exposures, including maternal health, 
intrauterine environment, mode of delivery, nutrition, microbial colonization, infections, and therapeutic 
interventions such as vaccinations or antibiotics [2]. 
Accumulating evidence suggests that these early influences can have enduring effects on immune homeostasis and 
disease susceptibility throughout the life course [1]. Immune programming may contribute to the development of 
a balanced immune response, but when dysregulated, it can predispose individuals to a spectrum of disorders, 
including increased susceptibility to infections, allergic diseases, autoimmune conditions, and even metabolic and 
neurodevelopmental disorders [3,4]. Understanding the mechanisms by which immune programming occurs is 
crucial for the design of preventive and therapeutic strategies aimed at optimizing immune health from the earliest 
stages of life [5]. Advances in developmental immunology, epigenetics, microbiome research, and systems biology 
have shed light on the molecular and cellular pathways involved in immune education [6]. These insights are 
transforming our understanding of immune-related diseases and offering new avenues for intervention during 
critical developmental periods. This review aims to provide a comprehensive synthesis of the current knowledge on 
the mechanisms of immune programming, emphasizing the interactions between genetic, epigenetic, microbial, 
metabolic, and neuroendocrine factors that collaboratively shape the immune landscape from the earliest moments 
of life 
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Developmental Windows for Immune Programming 
Immune programming occurs during distinct developmental windows when the immune system is particularly 
sensitive to environmental influences [7]. These windows span both the prenatal and postnatal periods and are 
pivotal for establishing immune competence and long-term immune homeostasis [8]. 
Prenatal Period 

Fetal immune development begins in utero, with hematopoietic stem cells colonizing the liver and subsequently the 
bone marrow and thymus by the end of the first trimester [9]. Although the fetal immune system is initially geared 
toward tolerance, it remains highly receptive to maternal influences [10]. Factors such as maternal nutrition, stress 
hormones, infections, metabolic status, and inflammatory signals can traverse the placenta and alter immune 
ontogeny [11]. These exposures can epigenetically modulate immune gene expression, thereby influencing immune 
function well into postnatal life [12]. 
Postnatal Period 
The postnatal period marks a dramatic expansion of antigenic exposure as the neonate encounters environmental 
microbes, dietary antigens, and vaccines [12]. Colonization by commensal microbiota, shaped by delivery mode and 
feeding type, plays a crucial role in training the immune system [13]. This period of immune plasticity is critical for 
the development of immune tolerance and balanced immune responses. Interventions during this phase, such as 
breastfeeding, nutritional supplementation, and microbial modulation, can have long-lasting effects on immune 
health [14] 
Epigenetic Mechanisms 
Epigenetic regulation plays a foundational role in immune programming by modulating gene expression without 
altering the underlying DNA sequence [15]. These mechanisms govern the timing, location, and intensity of 
immune gene expression, shaping immune cell development and function in response to early-life environmental 
cues [16]. 
DNA Methylation 
DNA methylation involves the addition of methyl groups to cytosine bases, primarily at CpG dinucleotides, leading 
to gene silencing or reduced transcriptional activity [17]. This process is particularly important in regulating 
immune-related genes such as cytokines, toll-like receptors, and transcription factors [18]. Environmental 
exposures during pregnancy and infancy—such as maternal nutrition (e.g., folate and methyl donors), infections, 
pollutants, and stress—can alter DNA methylation patterns, influencing immune tolerance, inflammation, and 
disease susceptibility later in life [19,20]. 
Histone Modifications 

Post-translational modifications of histone proteins, including acetylation, methylation, and phosphorylation, affect 
chromatin structure and gene accessibility [21]. These changes are dynamic and responsive to intracellular 
metabolic states and extracellular signals, allowing immune cells to adapt quickly to environmental stimuli [22]. 
Non-Coding RNAs 

MicroRNAs (miRNAs) and long non-coding RNAs (lncRNAs) are critical regulators of post-transcriptional gene 
silencing [23,24]. Early-life factors can modulate their expression, thereby fine-tuning immune gene networks and 
influencing immune development and responsiveness [24]. 
Microbiome-Immune Interactions 
The neonatal gut microbiome plays a foundational role in educating and shaping the developing immune system. 
From birth, microbial colonization begins a dynamic process that influences immune maturation, tolerance 
development, and long-term immune homeostasis [25]. 
Colonization Patterns 
The initial establishment of the gut microbiota is influenced by several perinatal factors, including the mode of 
delivery (vaginal birth vs. cesarean section), feeding practices (breastfeeding vs. formula feeding), antibiotic 
exposure, and environmental microbial diversity [26]. Vaginal delivery and breastfeeding promote colonization by 
beneficial microbes such as Lactobacillus and Bifidobacterium, which are associated with immune tolerance and 
protection against inflammation [27,28]. 
Short-Chain Fatty Acids (SCFAs) 

Gut microbes ferment dietary fibers to produce short-chain fatty acids (SCFAs) such as acetate, propionate, and 
butyrate [29]. These metabolites serve as signaling molecules that influence immune development, particularly by 
promoting the differentiation and function of regulatory T cells and by dampening pro-inflammatory responses 
[30]. 
 
 



 

This is an Open Access article distributed under the terms of the Creative Commons Attribution License 
(http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in 
any medium, provided the original work is properly cited. 

 
 

Page | 67 

Dysbiosis and Immune Programming 
Disruptions in microbial colonization termed dysbiosis during critical windows of immune development can lead to 
immune imbalance [31]. Reduced microbial diversity or loss of beneficial microbes is associated with increased risk 
of allergies, asthma, autoimmune conditions, and other chronic inflammatory diseases, underscoring the importance 
of microbial-immune crosstalk in early life [32] 
Metabolic Influences on Immune Programming 
Metabolic inputs during fetal and early postnatal life play a crucial role in shaping immune development. 
Nutritional Programming 

Adequate intake of macronutrients and essential micronutrients such as vitamin D, zinc, iron, and omega-3 fatty 
acids is vital for optimal immune cell maturation and function [33]. Nutritional imbalances during critical periods 
can lead to long-term immune dysregulation. 
Immunometabolism 

The metabolic pathways within immune cells influence their fate and function. Glycolysis supports rapid effector 
responses, while oxidative phosphorylation favors the development of memory and regulatory T cells, thus 
influencing immune programming and homeostasis [34]. 
Neuroimmune Communication 
The immune and nervous systems are intricately linked, engaging in bidirectional communication that plays a 
pivotal role in immune programming during early development [35]. This cross-talk is essential for maintaining 
homeostasis and responding to environmental stressors. 
Stress and the Hypothalamic-Pituitary-Adrenal (HPA) Axis 
Early-life stress activates the HPA axis, leading to increased secretion of glucocorticoids such as cortisol [36]. 
These hormones can suppress immune function by inhibiting pro-inflammatory cytokine production, reducing 
lymphocyte proliferation, and inducing thymic involution [37]. Chronic or excessive stress during critical 
developmental periods may lead to long-lasting immune dysregulation, increasing vulnerability to infections and 
inflammatory diseases [38]. 
Vagal Modulation 
The vagus nerve serves as a key conduit between the brain and immune system, modulating inflammation through 
the cholinergic anti-inflammatory pathway [39]. Its activity is influenced by early-life factors such as breastfeeding, 
gut microbiota composition, and caregiver bonding [40]. Proper vagal tone supports immune tolerance and limits 
excessive inflammatory responses, contributing to balanced immune programming [41]. 
Trained Immunity and Immune Tolerance 
Early-life exposures influence both innate and adaptive immunity, fostering protective mechanisms such as trained 
immunity and immune tolerance. 
Trained Immunity 
Innate immune cells, once thought to lack memory, can develop enhanced responsiveness through epigenetic and 
metabolic reprogramming [42]. This “trained immunity” enables a heightened, non-specific response to secondary 
infections and is influenced by microbial stimuli, vaccines (e.g., BCG), and nutrition [43]. 
Immune Tolerance 
Immune tolerance is critical for preventing allergic and autoimmune diseases. It is established through the early-life 
induction of regulatory T cells and tolerogenic dendritic cells [44]. Factors like breastfeeding, gut microbiota, and 
controlled antigen exposure support tolerance development [28]. 
Impact of Immune Programming on Disease Susceptibility 
Immune programming during early life exerts a lasting influence on disease susceptibility across the lifespan [1]. 
Disruptions in immune development can predispose individuals to a range of immune-mediated and non-
communicable diseases [45]. 
Infections 
Suboptimal immune programming may impair the development of effective pathogen recognition or weaken effector 
functions, increasing vulnerability to recurrent or severe infections, especially during infancy and early childhood 
[46]. 
Allergies and Asthma 

An early skewing of immune responses toward Th2-type polarization—often in the context of microbial dysbiosis—
can enhance allergic sensitization and the risk of asthma and atopic conditions [47]. 
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Autoimmune Diseases 
Failure to establish robust immune tolerance due to impaired regulatory T cell development or altered antigen 
presentation increases the likelihood of autoimmune disorders such as type 1 diabetes and juvenile idiopathic 
arthritis [48]. 
Metabolic and Cardiovascular Diseases 

Chronic low-grade inflammation, often rooted in early immune dysregulation, is increasingly linked to obesity, 
insulin resistance, and cardiovascular diseases, highlighting the systemic consequences of early immune imbalances 
[49] 
Early-Life Interventions 

A growing body of evidence supports the use of probiotics and prebiotics to beneficially shape the gut microbiota, 
enhancing microbial diversity and promoting immune tolerance. [50,51] These agents may reduce the risk of 
allergic diseases and infections. Vaccines and immunomodulators given during the neonatal period can train the 
innate immune system, promoting trained immunity and improving responses to pathogens [52]. Examples include 
BCG and oral polio vaccines, which have shown nonspecific protective effects [53]. Nutritional supplementation 
with key micronutrients—such as vitamin D, zinc, iron, and omega-3 fatty acids—during pregnancy and early 
infancy can support immune cell development and reduce immune-related morbidity [54]. 
Epigenetic Modifiers 
As the understanding of epigenetic regulation advances, the potential for epigenetic therapeutics grows. 

Interventions that target DNA methylation, histone modifications, or non-coding RNAs may allow for the 
correction of maladaptive immune programming in high-risk individuals [55]. Future therapeutic approaches may 
include dietary methyl donors, microbiota-targeted therapies, or small-molecule epigenetic drugs. 

CONCLUSION 

Immune programming is a complex, multifactorial process shaped by genetic, environmental, microbial, metabolic, 
and nutritional influences during early life. Mechanisms such as epigenetic regulation, microbiota-host interactions, 
and neuroimmune signaling provide critical insights into lifelong immune trajectories. Harnessing these 
mechanisms for timely intervention holds significant promise for preventing a wide range of immune-related 
diseases. Continued research integrating systems biology and multi-omics approaches is essential for developing 
precision immunotherapeutics tailored to critical windows of development. 
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